
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOG Y

AUTOMATION TECHNOLOGY

Christian Söderbacka

THE GOOSE PROTOCOL

Master´s thesis for the degree of Master of Science in Technology submitted for

evaluation, Vaasa, 15 March 2013.

Supervisor Jarmo Alander

Instructor Petri Välisuo, Leif Strandberg

 2

VAASAN YLIOPISTO

Teknillinen tiedekunta

Tekijä: Ralf Christian Söderbacka

Diplomityön nimi: GOOSE-protokolla

Valvojan nimi: Professori Jarmo Alander

Ohjaajan nimi: TkT Petri Välisuo, DI Leif Strandberg

Tutkinto: Diplomi-insinööri

Yksikkö: Sähkö- ja energiatekniikan yksikkö

Koulutusohjelma: Sähkö- ja energiatekniikan koulutusohjelma

Suunta: Automaatiotekniikka

Opintojen aloitusvuosi: 2009

Diplomityön valmistumisvuosi: 2013 Sivumäärä: 118

TIIVISTELMÄ

Merkittävä osuus uusista sähköasemista ympäri maailman noudattaa kansainvälistä IEC

61850 -sähköasemastandardia, joka määrittelee yhdenmukaisesti tietoliikennekäytännöt

niiden elektronisten laitteiden välillä, joista sähköaseman automaatiojärjestelmä

koostuu. Standardin menestys kasvattaa sen suosiota myös muissa sovelluksissa, ja sitä

hyödynnetäänkin esimerkiksi tuulivoimaloissa, vesivoimalaitoksissa ja älykkäissä

sähköverkoissa. Tämän diplomityön kannalta kiinnostavinta on IEC 61850 sovellettuna

polttomoottoreiden ohjausjärjestelmän ja voimalaitoksen oheislaitteiden väliseen

kommunikointiin.

Tämän diplomityön tavoitteena on kerätä kokemusta IEC 61850 -standardin sisältämän

GOOSE -kommunikointiprotokollan käytöstä. Työssä esitellään standardia ja siihen

liittyviä käsitteitä yksinkertaisten esimerkkien avulla. Lisäksi on kehitetty Linux-

ympäristössä toimiva, avoimeen lähdekoodiin perustuva ohjelma, jonka avulla voidaan

lähettää GOOSE -viestejä kahden eri laitteen välillä. Työn pääpaino on siis GOOSE-

protokollan ja kehitetyn ohjelman esittelyssä.

Tulokset osoittavat, että GOOSE -protokolla mahdollistaa yhteensopivan tiedonvaihdon

kahden eri valmistajan laitteiden välillä, joten sitä voidaan pitää varteenotettavana

vaihtoehtona lähitulevaisuuden kommunikointiprotokollaksi. IEC 61850 -standardia

saatetaan hyvinkin ottaa lähitulevaisuudessa käyttöön polttomoottorivoimaloissa.

Käyttöönoton aikataulu riippuu osittain markkinoiden kehityksestä sekä asiakkaiden

asettamista vaatimuksista.

AVAINSANAT: IEC 61850, GOOSE, SAS, DER

 3

UNIVERSIT Y OF VAASA

Faculty of Technology

Author: Ralf Christian Söderbacka

Topic of the Thesis: The GOOSE Protocol

Supervisor: Professor Jarmo Alander

Instructor: Ph.D. Petri Välisuo, M.Sc. Leif Strandberg

Degree: Master of Science in Technology

Department: Department of Electrical Engineering and

 Energy Technology

Degree Programme: Degree Programme in Electrical and Energy

 Engineering

Major of Subject: Automation Engineering

Year of Entering the University: 2009

Year of Completing the Thesis: 2013 Pages: 118

ABSTRACT

The majority of the electrical substations built today conform to the international

standard IEC 61850 that uniformly defines the communication between the various

intelligent electronic devices (IEDs) of the substation automation system. The success

of the standard in substation automation has expanded its application to new areas, such

as wind power, hydro power, and smart grids. For this thesis, the most intriguing use of

the standard is its application to the communication between the control system of

internal combustion engines and other equipment in a power plant.

The main objective of this thesis is to gain early experience on the use of the Generic

Object Oriented Substation Events (GOOSE) protocol, which is often considered the

most prominent communication protocol of IEC 61850. In this thesis, the standard IEC

61850 is described, and its most fundamental concepts are illustrated by clear examples.

An application based on open source software has been developed in the Linux-

environment in conjunction with this thesis. The application enables two IEDs from

different manufacturers to exchange GOOSE messages. The emphasis of the thesis is

thus on the presentation of the GOOSE protocol and the developed application.

The results show that the GOOSE protocol provides compatible interfaces for

information exchange between IEDs provided by different manufacturers, and can be

seen as a viable option as a future communication protocol. IEC 61850 will likely be

put into service in engine power plants, in the near future. The schedule partially

depends on the development of the markets and the requirements of the customers.

KEYWORDS: IEC 61850, GOOSE, SAS, DER

 4

VASA UNIVERSITET

Tekniska fakulteten

Författare: Ralf Christian Söderbacka

Diplomarbetets titel: GOOSE-protokollet

Övervakare: Professor Jarmo Alander

Handledare: TkD Petri Välisuo, DI Leif Strandberg

Examen: Diplomingenjör

Enhet: Enheten för elektro- och energiteknik

Utbildningsprogram: Utbildningsprogrammet för elektro- och

energiteknik

Inriktning: Automationsteknik

Årtal för inledande av studier: 2009

Diplomarbetet färdigställt: 2013 Sidantal: 118

ABSTRAKT

Majoriteten av de elstationer som byggs idag tillämpar den internationella standarden

IEC 61850 som enhetligt definierar kommunikationen mellan de intelligenta

elektroniska apparater som utgör elstationens automationssystem. Eftersom IEC 61850

har varit en framgångssaga i global skala ökar dess popularitet också inom alternativa

användningsområden, till exempel vindkraft, vattenkraft och smarta elnät. För detta

examensarbete ligger den mest intressanta tillämpningen av standarden i

kommunikationen mellan styrsystemet för förbränningsmotorer och övrig utrustning i

ett motorkraftverk.

Målet med detta examensarbete är att samla erfarenhet kring tillämpningen av GOOSE -

protokollet, som ofta anses vara det viktigaste enskilda kommunikationsprotokollet i

IEC 61850. I arbetet beskrivs standarden och dess koncept demonstreras med enkla

exempel. En applikation baserad på öppen källkod har utvecklats i Linux-miljö i

samband med detta examensarbete. Applikationen möjliggör kommunikation i form av

GOOSE -meddelanden mellan två olika elektroniska apparater. Tyngdpunkten i

examensarbetet ligger således på att beskriva GOOSE-protokollet och den utvecklade

applikationen.

Resultaten visar att GOOSE -protokollet tillåter kompatibelt informationsutbyte mellan

olika elektroniska apparater från olika tillverkare, och kan anses som ett hållbart

alternativ som framtidens kommunikationsprotokoll. IEC 61850 kommer sannolikt att

tas i bruk i motorkraftverk i den närmaste framtiden. Tidtabellen för ibruktagningen

beror delvist på marknadens utveckling samt på de krav som ställs av kunderna.

NYCKELORD: IEC 61850, GOOSE, SAS, DER

 5

TABLE OF CONTENTS page

TIIVISTELMÄ 2

ABSTRACT 3

ABSTRAKT 4

SYMBOLS AND ABBREVIATIONS 8

ACKNOWLEDGEMENTS 10

1. INTRODUCTION 11

2. IEC 61850 IN SUBSTATION AUTOMATION 13

2.1. The Open System Interconnection model 14

2.2. Networking in substation automation 15

2.3. Interoperability and interchangeability 20

2.4. Distributed functions and logical nodes 21

2.5. The information class model of IEC 61850 25

2.6. The System Configuration description Language 26

2.6.1. Configuration tools and SCL file types 27

2.6.2. The substation configuration process 30

2.6.3. Structure of the SCL file 31

3. THE GOOSE SOFTWARE APPLICATION 38

3.1. The Rapid61850 platform 39

3.2. The Vampset IED Configuration Tool 42

3.3. Development of the SCD file 45

 6

3.3.1. IED Laptop 46

3.3.2. IED VAMP 48

3.4. The C source code 48

3.4.1. Communication 48

3.4.2. The GOOSE retransmission scheme 51

3.4.3. The message exchange 54

3.4.4. Testing and results 55

4. THE ABSTRACT COMMUNICATION SERVICE INTERFACE 59

4.1. The application association model 64

4.2. Mapping of an abstract interface to a concrete interface 66

4.3. Object names and references 68

4.4. The server class model 69

4.5. The logical node class model 72

4.6. Data object classes 74

4.6.1. The functional constraint 77

4.7. The DataSet class 79

4.8. The generic substation event class model 81

5. CONCLUSIONS 86

5.1. Discussion 86

5.2. Future work 89

REFERENCES 92

APPENDICES 100

 7

APPENDIX 1. Application profiles and transport profiles 100

APPENDIX 2. The SCD file used in the GOOSE software project 103

APPENDIX 3. The main.c file used in the GOOSE software project 108

APPENDIX 4. Retransmission algorithm walkthrough step by step 112

APPENDIX 5. The Manufacturing Message Specification protocol 113

APPENDIX 6. Settings and bugs in Rapid61850 117

 8

SYMBOLS AND ABBREVIATIONS

$ Object name separation mark used by the MMS protocol

ACSI Abstract Communication Service Interface

CDC Common Data Class

CID Configured IED Description

DER Distributed Energy Resources

EMF Eclipse Modelling Framework

FC Functional Constraint

FCD Functional Constrained Data

FCDA Functional Constrained Data Attribute

GCB GOOSE Control Block

GoCB GOOSE Control Block

GOOSE Generic Object Oriented Substation Events

GSE Generic Substation Event

I/O Input / Output

ICD IED Capability Description

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IID Instantiated IED Description

IP Internet Protocol

ISO International Organization for Standardization

JET Java Emitter Templates

LAN Local Area Network

LDU Local Display Unit

LLN0 Logical Node zero

LN Logical Node

LN0 Logical Node zero

LPHD Logical node physical device

MAC Media Access Control

Mbps Mega bits per second

MCAA Multicast Application Association

 9

MMS Manufacturing Message Specification

OSI Open System Interconnection

PTPv2 Precision Time Protocol

q Quality

SAP Service Access Point

SAS Substation Automation System

SCD System Configuration Description

SCL System Configuration Language

SCSM Specific Communication Service Mapping

SNTP Simple Network Time Protocol

SSD System Specification Description

SV Sampled Values

t Timestamp

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

TPAA Two-party Application Association

TrgOp Trigger Option

VLAN Virtual Local Area Network

VMD Virtual Manufacturing Device

XCBR Circuit Breaker logical node class

XML eXtensible Markup Language

 10

ACKNOWLEDGEMENTS

This Masterôs thesis was initiated by Wärtsilä Finland ï PowerTech Research and

Development, Department of Automation and Control. It concerns the implementation

of the standard IEC 61850 for communication in power plants.

First, I would like to thank my instructor at Wärtsilä, M.Sc. Leif Strandberg, and his

superior, M.Sc. Pasi Juppo, for giving me the opportunity to write this thesis. Iôd also

like to thank my supervisor, Professor Jarmo Alander, and my second instructor, Ph.D.

Petri Välisuo, at the University of Vaasa, for their guidance and helpful advice. Very

special thanks go to my co-worker at Wärtsilä, M.Sc. Staffan Tunis, for continuously

advancing the software development, and for proofreading of several drafts of my

thesis. Yet another person Iôd like to thank is M.Sc. Olavi Vähämäki, R&D Director at

Vamp Ltd., for letting me borrow a Vamp 50 protection relay, and for providing me

with multiple useful documents.

Last but not least, Iôd like to thank my fellow board members at Wasa

Teknologförening
1
 (WTF), for making this final year of study a memorable one.

Vaasa 11.3.2013

Christian Söderbacka

1
 A society founded in 2012 for Swedish-speaking MŀǎǘŜǊΩǎ ǎǘǳdents at the University of Vaasa and

Åbo Akademi.

 11

1. INTRODUCTION

Electrical substations often have protection and control devices that have been produced

by a variety of different manufacturers. Traditionally, different devices have used

different types of communication protocols, making them inherently incompatible in

networking. (IEC 61850-1 2003: 9.)

The standard IEC 61850 presented by the International Electrotechnical Commission

(IEC) was designed to standardize the communication between different intelligent

electronic devices (IEDs). This has been done mainly by defining rules on how data

should be modeled and organized in a way that is consistent across different devices.

The standardization brings compatibility between different kinds of devices provided by

different manufacturers and reduces the engineering effort required to configure the

substation automation system (SAS). Although many modern electrical substations are

built to conform to IEC 61850, the standard is also being used extensively in other

applications, for example in wind and hydro power systems. (IEC 61850-1 2003: 9-10;

Mackiewicz 2006.)

This Masterôs thesis was initiated by Wärtsilä Finland, Department of Automation and

Control, as a part of a research project set to investigate the possibilities of integrating

the standard IEC 61850 into the embedded electronic devices (modules) used for the

control of reciprocating engines
2
. The goal is to get a more direct communication

between the engine control system, which utilizes a proprietary protocol, and the

supplementary systems, which already implement the Generic Object Oriented

Substation Events (GOOSE) protocol.

IEC 61850 specifies a set of logical nodes for the modeling of different functions in a

SAS. Logical nodes suitable for the modeling of a reciprocating engine can be found in

an extension to the standard, the IEC 61850-7-420, which contains specifications of

logical nodes for the Distributed Energy Resources (DER) domain.

2
 Internal combustion engines running on for example methane gas or diesel.

 12

In this thesis the IEC 61850 standard is studied, and the concepts are demonstrated

using simple examples where possible. The material covered in this thesis is based on

scientific research articles and on the standard itself. Several earlier theses dealing with

similar topics were also studied.

A simple application based on an open source platform was developed and run on one

of Wärtsiläôs proprietary modules called LDU, which is short for Local Display Unit 20.

The application enables the LDU to transmit and receive GOOSE messages over an

Ethernet local area network (LAN). To verify that the LDU is capable of

communicating with another IED from a different manufacturer, an interoperability test

was set up where GOOSE messages were exchanged between the LDU and a Vamp 50

protection relay provided by Vamp Ltd., Vaasa, Finland. The network traffic was

monitored using the Wireshark Network Analyzer tool, and PuTTY, which is an SSH

and telnet client.

The results confirm that the GOOSE protocol can indeed be used for communication

between IEDs provided by different manufacturers. The successful interoperability test

justifies further research and developmentðthe ultimate goal is to exploit the full

potential of IEC 61850 in certain modules of the engine control system.

This thesis, apart from the introduction, is divided into four chapters. Chapter 2 presents

IEC 61850 as it applies to electrical substation automation. It introduces multiple

standard-specific notions and serves to give the reader a basic understanding of IEC

61850. Chapter 3 presents the practical work done in this thesis, where an application

implementing GOOSE messaging was developed and tested. The hardware, software

tools, and code development is briefly described. Chapter 4 presents the Abstract

Communication Service Interface (ACSI), used for modeling the substation devices, the

data to be exchanged between devices, and the services used for reading and writing

attribute values in devices. The chapter also presents the Specific Communication

Service Mappings (SCSMs), needed to map the abstract Application layer protocols of

IEC 61850 to a concrete transport protocol (Ethernet). Chapter 5 presents the

conclusions. It also brings up the difficulties that were met during the study of the

standard, and concludes with a discussion of conformance testing.

 13

2. IEC 61850 IN SUBSTATION AUTOMATION

The international standard IEC 61850 óCommunication networks and systems for power

utility automationô
3
 consists of multiple different parts, and makes use of a variety of

existing standards. Several other documents are also used in conjunction with the

standard, like the extension IEC 61850-7-420 óBasic communication structure ï

Distributed energy resources logical nodes', the IEC 61850-9-2LE óImplementation

guidelines for digital interface to instrument transformers using IEC 61850-9-2ô, the

IEC 62439-3 óHigh availability automation networksô
4
, and the IEC 61588 óPrecision

clock synchronization protocol for networked measurement and control systemsô
5
. (IEC

61850-1 2003: 10.)

An SAS can be described as ña supervisory management and control system for

industrial electrical distribution systems.ò The SAS is implemented using a number of

IEDs to perform the required functions, such as monitoring, protection, control, and

data processing. óIEDô is a collective name for microprocessor-based devices with

networking capabilities. An IED can be described as: ñan instrumentation and control

device that is capable of collecting and reacting to data and then use this data to create

information.ò Examples of common types of IEDs are protection relays, circuit breaker

controllers and voltage regulators. To realize communication between different IEDs, a

communication protocol is required. A protocol can be described as ña set of rules that

must be obeyed for orderly communication between two or more parties.ò For the

communication to work, the IEDs need to be interoperable. Interoperability refers to the

ability of devices to operate on the same network or communication path sharing the

same information and commands. (Ozansoy 2006: 1, 13, 17; IEC 61850-1 2003: 9.)

3
 ¢ƘŜ ŦƛǊǎǘ ŜŘƛǘƛƻƴ ƻŦ L9/ смурл ǿŀǎ ƪƴƻǿƴ ŀǎ ΨCommunication networks and systems in substationsΩ

but the name was changed in the second edition due to the expanded use of the standard.

4
 Not considered in this thesis.

5
 Corresponds to IEEE 1588.

 14

2.1. The Open System Interconnection model

The Open System Interconnection (OSI) 7-layer reference model, depicted in Figure 1,

is based upon the concept of layering of communication functions, and is frequently

used as a framework for describing how a layered protocol stack operates. Each layer in

the reference model is responsible for specific tasks, and uses services offered by the

layer below while providing services to the layer above. The communication between

two adjacent layers is called an interface. The higher up in the stack a layer resides, the

more abstract view it has on the lower layer implementation details. This improves the

interoperability between the layers and between different network devices using

different platforms and operating systems. It also facilitates network programming. OSI

also recognizes the existence of application profiles (layers 5-7), and transport profiles

(layers 1-4) in the OSI model. Diff erent combinations of application profiles and

transport profiles are used for the transmission of different types of messages. The

profile combinations used for client/server and GOOSE (publisher/subscriber)

messaging can be found in Appendix 1. Sockets are, in the UNIX domain, interfaces

from the upper three layers into the Transport layer. (Scaglia 2007: 11-12; IEC 61850-

8-1 2011: 25; Stevens 1998: 18.)

1. Physical Layer

2. Datalink Layer

3. Network Layer

4. Transport Layer

5. Session Layer

6. Presentation Layer

7. Application Layer

Application Profile

Transport Profile

Sockets

Application

details

Communication

details

Figure 1. The layered OSI reference model. (Adapted from Stevens 1998: 18.)

 15

2.2. Networking in substation automation

The functional hierarchy of a substation can be conceptually divided into three different

levels: the station, bay, and process level. Figure 2 depicts the functional hierarchy the

way it was perceived by the author (the figure is actually a compilation of several

different figures from different sources). Application functions of the SAS can be

distributed between IEDs on the same, or at different levels of the functional hierarchy.

The free allocation of functions to IEDs enables different approaches in function

integration, function distribution, and substation automation architecture. (IEC 61850-1

2003: 12-14; Yashwant & Swarup 2011.)

Station bus

Process level

Control

IED

Protection

IED

Merging

unit

Control

IED

Protection

IED

Merging

unit

Process bus

Station level

Bay level

Operatorôs

workplace

Engineering/

monitoring

Breaker

IED

Sampled

Values

Bay

Q1

Bay

Q2

Breaker

IED

GOOSE

(undefined)

Gateway for

remote operation

over a WAN

GPS clock

synchronization

GOOSE

GOOSE
Sampled

Values

Client/server

GOOSE

Client/server

Figure 2. Conceptual model of a distributed protection system of an electrical

substation conforming to IEC 61850. The arrows show where the different message

types of IEC 61850 travels. (Adapted from Schnakofsky 2011: 16.)

 16

The process level relates to collecting data and status information from the primary

equipment (e.g. instrument transformers, circuit breakers etc.) in a bay, as well as to

operating on the primary equipment, e.g. tripping of circuit breakers, control of

disconnecting switches etc. (Janssen & Apostolov 2008; Xyngi & Popov 2010.)

The bay level consists of separate bays each with control, protection and monitoring

devices, i.e., secondary equipment. A óbayô is a collective name for a power system

subset consisting of closely connected subparts with some common functionality, like a

circuit breaker and its associated isolators, earth switches, and instrument transformers,

or a transformer with its related switchgear between two busbars representing two

different voltage levels. Each (medium voltage) feeder cubicle inside the substation

control house typically counts as a bay, where the control and protection functions are

typically performed by the same IED. In a high voltage bay, for example in the

switchyard, the control and protection functions are typically performed by different

IEDsðthe controller IED being called ñbay controllerò. (IEC 61850-1 2003: 7, 14;

Ingram, Schaub & Campbell 2011; Starck 2012.)

The station level is the station supervisory level that holds the station computer, which

contains among other things a human-machine interface (HMI) , i.e., a Supervisory

Control and Data Acquisition (SCADA) system, with which the operator can monitor

and control the substation. The station level generally also has interfaces for remote

communication and Global Positioning System (GPS) clock synchronization. (IEC

61850-1 2003: 14.)

The station bus and the process bus (see Figure 2) are key concepts in IEC 61850. They

are defined by IEC 61850-8-1 and IEC 61850-9-2, respectively. The station bus and the

process bus are usually perceived as two physically separate networks, although it is

possible to have them share the same network infrastructure, i.e., an Ethernet LAN.

Both networks can therefore be used to transmit IEC 61850-specific message types like

¶ time-critical connectionless multicast data stream of Sampled Values (SV)

mapped directly onto Ethernet frames on the DataLink layer,

 17

¶ time-critical connectionless multicast GOOSE messages mapped directly onto

Ethernet frames on the DataLink layer,

¶ non-time-critical, connection-oriented, unicast client/server messages mapped to

the Manufacturing Message Specification (MMS) protocol that operates over the

Transmission Control Protocol / Internet Protocol (TCP/IP) and Ethernet stack.

The Simple Network Time Protocol (SNTP) and Precision Time Protocol (PTPv2) time

synchronisation protocols are typically used to provide the time synchronization in

substations conforming to IEC 61850. SNTP can be used where high precision is not

required, and is sometimes used in the station bus. PTPv2 is capable of the sub-

microsecond precision required by GOOSE and SV messaging, and is therefore used in

the process bus. Time synchronization is left outside of this thesis. (McGhee & Goraj

2010; Ingram, Schaub & Campbell 2012; IEC 61850-9-2 2011: 16.)

The different message types are typically assigned different VLAN (Virtual LAN)

identifiers and priority levels. VLAN allows an Ethernet switch to deliver information

only to those switch ports/IEDs that have subscribed to the data. The time-critical

GOOSE and SV messages are expected to deliver data fast and reliably and should

therefore be assigned a higher priority than non-time-critical messages. High priority

messages get processed ahead of low priority messages in switch queues. (Ingram,

Schaub & Campbell 2011; Mackiewicz 2006; Xyngi & Popov 2010.)

A substation usually has one global station bus but multiple process buses, one for each

bay. As depicted in Figure 2, the IEDs residing at the bay level are simultaneously

connected to both the station bus and the process bus via independent network

interfaces. The process and station busses are typically realized as Fast Ethernet (100

Mbps) full -duplex fibre optic Ethernet LANs. The process bus might have to be realized

as Gigabit Ethernet (1000 Mbps or more) to accommodate the network traffic. The

station bus is used for communication between

¶ different devices residing at the station level,

¶ devices residing at the station level and devices residing at the bay level (vertical

communication), and

 18

¶ devices residing in different bays (horizontal communication).

The process bus interconnects all IEDs within a bay, and is used for the communication

between devices residing at the bay and process levels, e.g. between the primary and

secondary equipment. (Liang & Campbell 2008; Ingram, Schaub & Campbell 2011;

Janssen & Apostolov 2008; Xyngi & Popov 2010; De Mesmaeker, Rietmann, Brand &

Reinhardt 2005; McGhee & Goraj 2010; Moore, Midence & Goraj 2010; Moore &

Goraj 2011.)

A merging unit (see Figure 2) is an IED residing at the process level that collects data

from both conventional (passive) and non-conventional (microprocessor-based) current

transformers and voltage transformers, as well as binary status information from the I/O

units of primary devices such as circuit breakers and other switchgear. It also acquires

analogue values from other transducers and sensors. The merging unit need not

necessarily be a standalone unit as it can be integrated into non-conventional instrument

transformers. (Moore & Goraj 2011; IEC 61850-9-1 2003: 29.)

The merging unit in a 50 Hz system continuously samples the input values at a rate of

80 samples per cycle for protection applications and 256 samples per cycle for power

quality monitoring and waveform recording applications, as specified by the IEC

61850-9-2LE guideline document. The Sampled Values receive a timestamp and are

transmitted as a continuous stream over the process bus. The merging unit transmits

4000 messages per second, which results in a traffic rate of 4.4 Mbps. (Moore & Goraj

2011; Ingram, Schaub & Campbell 2011.)

The process bus conveys the SVs from the process level to the bay level, and GOOSE

messages from the bay level to the process level. The SV messages are processed by the

subscribing protection and control devices, which can then take appropriate actions like

sending GOOSE messages to trip a breaker. The digitized SVs must be received fast, in

synchronism, and without any interruptions by the protection devices in order for the

protection algorithms to function properly. (Ingram, Schaub & Campbell 2011; Moore

& Goraj 2011; Janssen & Apostolov 2008.)

 19

The station bus conveys non-time-critical messages by the client/server communication

profile between devices at the station level, and between devices at the station and bay

levels. To reach devices at the process level, the messages are forwarded over the

process bus. Therefore supervision and maintenance of the devices connected to the

process bus can be handled from the HMI and the substation gateway connected to the

station bus. The station bus also conveys time-critical GOOSE messages with critical

protection information between bays, nominally at a 4 kHz sample rate. The GOOSE

message contents can be binary (e.g. interlocking or blocking), or transduced analogue

values (e.g. measurement information.) (Moore & Goraj 2011; Ingram, Schaub &

Campbell 2011; Kirrmann, Rietmann & Kunsmann 2008; Antonova, Frisk & Tournier

2011.)

Both SV and GOOSE messages are published as multicast messages. The multicast

publishing model is connectionless, which means that the publisher will not receive any

acknowledgement of a successfully delivered message from the subscribing devices.

However, multicasting of messages is efficient and enables high levels of real-time

traffic over the process bus. The SVs are normally not allowed to enter the station bus

as they consume bandwidth and load IEDs that do not require receiving the SV stream.

The client/server communication utilizes the TCP/IP protocol suite, which guarantees

the delivery of unicast messages. These messages might be for instance settings and file

transfers. (Antonova, Frisk & Tournier 2011; Ingram, Schaub & Campbell 2011.)

High levels of multicast message traffic might flood the network and affect the

performance of protection IEDs and PTPv2 clocks. If the level of traffic exceeds the

network capacity or the capacity of the subscribers to process messages, multicast

address filtering can be used in the Ethernet switches. Multicast address filtering

restricts the SV and GOOSE traffic to defined subsets of subscribers. The switches need

to ensure that the traffic rate does not exceed 100 Mbps as this is the maximum rate that

the links and the Fast Ethernet interfaces of the IEDs can manage without degradation in

performance. (Ingram, Schaub & Campbell 2011.)

GOOSE messaging enables simple testing and simulation of the SAS as any GOOSE

message can be monitored and reproduced using a laptop PC, as illustrated in Figure 3.

 20

Complicated and substation-wide virtual testing such as breaker fail trip can be

performed without setting up any temporary wiring. The laptop can be used to send

GOOSE messages to the system, and to monitor the results via GOOSE or MMS

message reports. (Bekker, Diamandis & Tibbals 2010.)

Figure 3. Laptop sending simulation GOOSE messages and monitoring system

GOOSE messages during the testing of an SAS. (Bekker, Diamandis & Tibbals

2010.)

2.3. Interoperability and interchangeability

Part 7-1 of the standard states the following: ñThe goal of the IEC 61850 series is to

provide interoperability between the IEDs from different suppliers or, more precisely,

between functions to be performed by systems for power utility automation but residing

in equipment from different suppliers.ò Interoperability refers to the ability of the

interfaces of two different systems to cooperateðwhat this means in practice is that the

IEDs involved provide comparable functionalities, and that an IED in a system can be

replaced by another IED from the same or another manufacturer through a limited

amount of reconfiguration effort. The integration effort required to make two systems

cooperate depends on the specification of the interfaces: the more compatible the

 21

interfaces are the less integration effort is required. The level of compatibility is denoted

as óintegration distanceô in Figure 4. (IEC 61850-7-1 2011: 10; Dawidczak & Englert

2010.)

 tƭǳƎΩƴ Ǉƭŀȅ =
Interchangeability

 Interfaces use common
data and service model

= Interoperability

Interfaces can be mapped or
transformed

No standards available, requires
full custom integration

Integration distance

IED 1 IED 2
Proprietary protocols

Standard protocols

IEC 61850

Ultimate goal

Figure 4. Integration distance between IEDs from different vendors. The longer the

distance, the more engineering effort is required to make devices interoperable.

(Adapted from Dawidczak & Englert 2010.)

One important thing to realize is that IEC 61850 does not cover the interchangeability

among devices, which refers to the highest level of compatibility where an IED in a

system can be replaced by another IED from another manufacturer without making any

changes to the other elements in the system. To reach interchangeability, a

standardization of the interfaces, functions, and algorithms is required, but as IEC

61850 clearly states, the standardization of functions is beyond its scope.

Interchangeability can currently be achieved only between identical IEDs. (Dawidczak

& Englert 2010; IEC 61850-1 2003: 9-10.)

2.4. Distributed functions and logical nodes

All known application functions of an SAS have been identified in IEC 61850. These

functions are control and supervision, as well as protection and monitoring of the

primary equipment and of the grid. The functions are composed of multiple

 22

subfunctions, such as individual measurement and control functions implemented in

different IEDs. The functions of an SAS may therefore be split into their constitutional

functional parts. An IED, called physical device in this context, can be configured to

implement one or more functions. (IEC 61850-1 2003: 12, 14; IEC 61850-7-1 2011: 16,

17.)

The decomposition process of IEC 61850 decomposes the application functions of an

SAS into the smallest function parts which exchange data: the logical nodes. A logical

node can be described as a virtual representation, or functional model, of a real device.

For example, the logical node WBAQ represents a real circuit breaker, modeled as a

function. The logical nodes may be allocated to different physical devices at the same,

or different levels of the functional hierarchy (see Figure 2). The allocation is not fixed

and any allocation should be supported by the standard. After the allocation, the logical

nodes residing in the different physical devices can exchange information over the

network through information exchange services. The information exchange requires that

the physical devices are interoperable. The logical nodes can take on the client/server or

publisher/subscriber roles, depending on the type of application. (IEC 61850-7-1 2011:

17, 27, 77; IEC 61850-1 2003: 12, 14; Ozansoy 2006: 41-42.)

The logical node concept is illustrated in Figure 5. Each physical device (OC) contains a

logical node zero (KM/(which refers to the information regarding the device itself. The

logical nodes (KMs) are allocated to functions (E) and physical devices. The logical

nodes are linked by logical connections (KB), and the physical devices are linked by

physical connections (OBs). Each logical node is a part of a physical device, and each

logical connection is a part of a physical connection. The System Configuration

description Language (SCL), described in Section 2.6, is needed to control the

allocation of the logical nodes to physical devices. (IEC 61850-5 2003: 20-21.)

 23

Figure 5. The logical node and link concept, where E = substation function, KM =

logical node, OC = physical device, OB = physical connection, KB = logical

connection. The logical nodes that make up a function can be freely distributed to

different physical devices. (IEC 61850-5 2003: 21.)

The logical connections between the logical nodes can be direct, indirect, or even a

combination of the two, i.e., client/server, SV, and GOOSE messaging individually or

combined. The whole substation communication system is built as a distributed system

consisting of a collection of interacting logical nodes that are logically connected by

logical connections. In case of a failure of a logical node or a related link, a function

might get blocked completely, or show a graceful degradation
6
. (Liang & Campbell

2008; IEC 61850-1 2003: 14.)

A function which is performed by two or more logical nodes that are residing in

different physical devices is called a distributed function. The logical connection, or

communication, between these logical nodes, when modelled in SCL, is called data

flow. IEC 61850-1 states the following: ñData flow is used to understand the

communication interfaces that must support the exchange of information between

6
 The ability of a computer or network to maintain limited functionality even when a large portion

of it has been destroyed or rendered inoperative. (SearchNetworking 2013.)

 24

distributed functional components and the functional performance requirements.ò The

existence of a distributed function is thus determined by the modelled data flow. (IEC

61850-1 2003: 12, 14; Blair 2013.)

Several logical nodes, residing in the same physical device, build a logical device, i.e.,

the logical device is basically a container containing a group of logical nodes

representing some related functions. A logical device always contains a logical node

zero (KKM/), which represents common data of the logical device. The mode of KKM/

is used to control the mode of the logical device and all the logical nodes it consists of.

For example, when the function of a logical device is disabled, all the logical nodes it

consists of will be disabled as well. A logical device may also contain a logical node

physical device
7
 (KOGC), which represents common data of the physical device hosting

the logical device. Logical nodes thus describe the distributed functions, the

subfunctions, and the functional interfaces of an SAS. (IEC 61850-1 2003: 12, 14; IEC

61850-7-1 2011: 17, 27, 64; IEC 61850-7-2 2010: 17, 38.)

An example of an over-current protection function consists of four communicating

logical nodes, as illustrated in Figure 6. The current is measured by a current

transformer and the sampled analogue values are communicated by the current

transformer logical node, SBSQ. When logical node OHNB (instantaneous overcurrent)

detects that the current grows beyond a certain limit, it signals the logical node BRVH

(switch controller), which in turn activates WBAQ (circuit breaker), and the circuit

breaker contact opens. (Ozansoy 2006: 42; IEC 61850-7-4 2010: 34, 66, 97, 105.)

7
 KOGC shall be defined in at least one logical device. (IEC 61850-7-1 2011: 64.)

 25

Figure 6. A simple example of an over-current protection function realized as a group

of communicating logical nodes. (Ozansoy 2006: 42.)

2.5. The information class model of IEC 61850

A physical device may host zero or more servers
8
. A physical device may also contain

one or more logical devices, which may or may not belong to a server. A logical device

may contain a few or more logical nodes, i.e., an KKM/, possibly an KOGC, and one or

more logical nodes representing functions. A logical device is always implemented in

one physical device; therefore logical devices do not contain logical nodes from

different physical devices. Each logical node contains one or more data objects, which

represent meaningful information of applications located in a physical device. Each data

object contains an application-specific set of dedicated data attributes, and therefore

correspond to structured application data. Data attributes are the logical correspondence

to physical entities, and may represent memory units, registers, communication ports,

etc., presented as elementary parameter values. (Mackiewicz 2006; IEC 61850-7-1

2011: 17, 64, 76, 85; Liang & Campbell 2008; IEC 61850-7-2 2010: 38, 45; IEC 61850-

6 2009: 57.)

8
 A server is basically a program running on a physical device. (Liang & Campbell 2008).

 26

The hierarchical structure described above leads to an object oriented information class

model, depicted in Figure 7, which is used to describe a real substation device. The

information class model, as well as the information exchange between devices, was

designed to be independent of any concrete implementation, and is therefore referred to

as abstract. An abstract model needs to be mapped to a concrete protocol stack through

a Specific Communication Service Mapping (SCSM) to become usable. The

information class model, the information exchange services, and the SCSMs are

discussed in more detail in Chapter 4, óThe abstract communication service interfaceô.

(IEC 61850-7-1 2011: 17, 53; Ozansoy 2006: 37.)

SERVER

LOGICAL DEVICE

LOGICAL DEVICE

LOGICAL DEVICE

...

LOGICAL DEVICE

LOGICAL NODE

LOGICAL NODE

LOGICAL NODE

...

LOGICAL NODE

DATA OBJECT

DATA OBJECT

DATA OBJECT

...

DATA OBJECT

DATA ATTRIBUTE

DATA ATTRIBUTE

DATA ATTRIBUTE

...

Figure 7. Hierarchy of the information class model of IEC 61850. A physical device

may host zero or more servers, each of which ñcontainsò one or more logical

devices. Each logical device contains one or more logical nodes. Each logical node

contains one or more data objects. Each data object contains a set of data attributes.

(Adapted from Liang & Campbell 2008.)

2.6. The System Configuration description Language

The System Configuration description Language
9
 (SCL) is used to describe the

substation infrastructure, the SAS, and the communication between IEDs. The main

purpose of the SCL is to exchange IED capability descriptions and SAS descriptions

between IED engineering tools and the system engineering tool(s) from different

9
 Formerly known as the Substation Configuration Language.

 27

vendors in a compatible way. The SCL is based on XML
10

 and its semantics are

defined by the IEC 61850 XML Schema. An XML Schema specifies the structure of

valid XML documents. (IEC 61850-6 2009: 8; Blair 2012: 7; Goldberg 2009: 114.)

The electrical topology of the substation can be described by a single line diagram,

which contains the different voltage levels, transformers, bays, busses, switchgear etc.

Annex C of IEC 61850-6 defines an SCL syntax extension that can be used for

displaying the power system electrical topology as a drawing. This facilitates the

development of applications for visualizing the power system, the location of IEDs, and

their communication services. The visualization could then be linked to real-time data

from IEDs, creating a substation monitoring application. (IEC 61850-6 2009: 153;

Blair, Coffele, Booth & Burt 2012; Apostolov 2010.)

2.6.1. Configuration tools and SCL file types

The IED Configuration Tool is a manufacturer-specific, and possibly also IED-specific,

software tool that is responsible for the data model of the IED. It generates IED-specific

configuration files. The System Configuration Tool is an IED-independent system level

tool that is responsible for the communication addressing and data flow between IEDs.

It generates substation-related configuration files. The data flow is modelled by a list of

signals that are the input of a logical node. If several logical nodes need to access the

input data, it should be mapped to the KKM/ which represents the whole logical device.

A System Specification Tool is used to generate files that specify the substation structure

by a single line diagram. (IEC 61850-6 2009: 12, 15, 26.)

There are several different subtypes of the SCL file used for the data exchange between

the different configuration tools. These different file types can be distinguished by their

file extensionsðthe extension being the name of the file type. The configuration tools

10
 eXtensible Markup Language v1.0

 28

parse the SCL files and validate the SCL syntax and structure using IEC 61850-specific

XML Schema files. Each SCL file should contain a version and revision number to

distinguish different versions of the same file. This means that each tool has to keep the

version and revision number information of the last file exported, or read back the last

existing file to find out its version. Figure 8 depicts the substation configuration

process
11

 with the different tools and SCL file types involved. (IEC 61850-6 2009: 26-

27; Yongli, Dewen, Yan & Wenqing 2009.)

Figure 8. Conceptual substation configuration process using different software tools

and different kinds of SCL files. The configuration of a substation is an iterative

process where the different SCL files get exchanged between the engineering tools.

(Aguilar & Ariza 2010.)

The contents of an SCL file can be conceptually divided into five different sections,

each describing a distinct part of the system. The sections are called header, substation,

communication system, IED, and data type templates. The header section provides

information and processing instructions to the XML parser, for example information on

which XML Schema shall be used when validating the file. The substation section

describes the functional structure of the substation and identifies the primary devices

and their electrical connections. The IED section describes the configuration of an IED

and its communication services. The communication system section describes the

11
 Described in Section 2.6.2

 29

possibilities of direct communication between logical nodes by means of subnetworks

and Service Access Points
12

 (SAPs). The data type templates define the instantiable

logical node types, data object types, data attributes, and enumerate data types. (Yun

2011.)

The IED Capability Description (ICD) file is used when data is transferred from the

IED Configuration Tool to the System Configuration Tool. The file must contain an

IED section, which describes the functional capabilities of the IED, and a data type

templates section, which describes the data types instantiated in the IED. As the IED

has not been configured for the project, its name shall be TEMPLATE. The ICD file

may also contain an optional substation section, where the substation name shall be

TEMPLATE, and a communication section, defining possible default addresses of the

IED. IEC 61850 does not specify from where the ICD file should originate. In the

general case, it is stored in the IEDôs memory at the factory. Another possibility is that

the vendor provides software tools that output the ICD file. (IEC 61850-6 2009: 26;

Apostolov 2010; Yun 2011.)

The Instantiated IED Description (IID) file is also used in the data transfer from the IED

Configuration Tool to the System Configuration Tool. It describes a single IED

configured for the project, IED instance value changes, or data model modifications. If

the IED has a project specific name it may also have project specific addresses, a data

model with preconfigured DataSet
13

 definitions, and logical nodes linked to the project

specific single line diagram. IID files are used for IEDs whose number of logical node

instances depends on the single line diagram or on other IEDs. (IEC 61850-6 2009: 26-

27.)

The System Specification Description (SSD) file is used in the data transfer from a

System Specification Tool to the System Configuration Tool. It describes the substation

12
 Abstraction of a network address by which a device is connected to a subnetwork.

13
 A list of references to data attributes the values of which shall be sent as a GOOSE or SV message.

 30

by a single line diagram and the functional requirements represented by logical nodes.

The file contains a substation section, and may contain the required data type templates

and logical node definitions. The logical nodes allocated to the substation section that

are not yet allocated to specific IEDs shall have the IED name reference set to óNoneô.

(IEC 61850-6 2009: 27.)

The System Configuration Description (SCD) file is used in the data transfer from the

System Configuration Tool to the IED Configuration Tool(s). It contains the definitions

of all IEDs and information regarding data flow, data types, communication

configurations, and substation description. The IEDs in the SCD file have been further

configured from their default state to operate within the SAS. The SCD files can be

used to configure the individual IEDs. (IEC 61850-6 2009: 27; Apostolov 2010.)

The Configured IED Description (CID) file is used in the data transfer from the IED

Configuration Tool to an IED. The file is a stripped down SCD file, i.e., it represents a

single IED section of the SCD file, thus providing a restricted view of the source IEDs.

It describes the communication related part of an instantiated IED within a project, and

contains the substation specific names and addresses. (IEC 61850-6 2009: 27.)

2.6.2. The substation configuration process

In the substation configuration (engineering) process, the different SCL files are

exchanged between the different configuration tools. The tools are in general not

allowed to modify the files they import; instead they use the information from the

imported files to generate a new type of file, as depicted in Figure 8. The IED

Configuration Tool begins the configuration process by importing an ICD file from an

IED, or by creating a new ICD file. The IED Configuration Tool can access the internal

functions of an IED, and is needed to set up the following features (IEC 61850-6 2009:

15; Aguilar & Ariza 2010):

¶ Logic and trip equations

¶ Graphical display on an IEDôs HMI

¶ Internal mappings

 31

¶ Non-IEC 61850 parameters

The System Configuration Tool imports the preconfigured ICD file which can be

described as an IED template, and instantiates a project specific IED. Another

alternative is to import an IID file, representing a preconfigured IED or an IED to which

modifications have been made during the configuration process. The tool also obtains

the substation structure from an SSD file created by the System Specification Tool.

After the extraction of the required data from the ICD and SSD files, an SCD file

describing the complete substation configuration, is generated. GOOSE messages can

be configured by specifying the publishers and subscribers of messages. (Aguilar &

Ariza 2010; IEC 61850-6 2009: 14-15; Yashwant & Swarup 2011.)

The SCD file is then imported by the IED Configuration Tool, which extracts the

information needed for a specific IED from the file. The extracted information becomes

the content of a CID file, i.e., the CID file describes an instantiated IED with device

specific configuration data. The CID file is then uploaded to the IED. The use of a CID

file to configure an IED is optional. (IEC 61850-6 2009: 15; Aguilar & Ariza 2010;

Yashwant & Swarup 2011.)

If IED related data has to be changed during the configuration process, an IID file can

be used to update the IED data within the system. In the next iteration of the

configuration process, the IID file is imported by the System Configuration Tool. In

case the IED described by the IID file does not exist in the SCD file, it can be imported

and instantiated as a project specific IED without any (data flow) references to other

IEDs. The required references need to be established by the System Configuration Tool,

which then generates the next revision of the SCD file. If the IED already exists in the

SCD file, the data model part and its values in the IID file replaces the old values in the

SCD file. (IEC 61850-6 2009: 14-15.)

2.6.3. Structure of the SCL file

Examples of the different sections of the SCL file will be presented next. The examples

are taken from the SCD file of the GOOSE software project that will be introduced in

 32

Chapter 3. The project involves no substation as it merely consists of two IEDs

interconnected through a switch. The examples, although somewhat incomplete, show

the most important concepts of the SCL. The complete SCD file used in the GOOSE

software project can be found in Appendix 2.

An example of the header section is given in Figure 9. The first line of an SCL

document always contains the XML declaration element, enclosed in the ;> and >=

characters. XML attributes are used to include additional information to the element.

The attribute udqrhnm denotes which version of XML that is being used, and the

attribute dmbnchmf indicates the method in which characters are encoded. TSEĂ7 stands

for Unicode Transformation Format (8-bit). This specification is required by XML

software to able to display characters in the Unicode character set correctly on the

screen. (Goldberg 2009: 4, 251-252).

Figure 9. An example of the header section of an SCL file. The default namespace,

wlkmr, is IEC 61850-specific.

The second line in Figure 9 introduces the root element, which is the main XML

element that contains all other elements. The name of the root element is SCL,

indicating that the file is an SCL document. XML elements are always enclosed inside

angle brackets. The attribute wlkmr, which is an abbreviation for XML namespace,

indicates the default namespace for the SCL document. A namespace is a collection of

related elements and attributes, identified by a namespace name. Names that are part of

one namespace do not interfere with the same names that are part of another namespace.

In other words, two elements can be assigned the same name if they belong to different

namespaces. The namespace name, i.e., the value of attribute wlkmr, must be unique,

 33

permanent, and written in the form of a URI
14

, typically in URL
15

 format. The URL

does not need to point to an actual fileðURLs are used because they are unique. XML

software does not even try to locate whatever the URL is pointing to. (Goldberg 2009:

4, 116, 164-165, 169.)

The name of the namespace is used by the XML parser to associate the SCL document

with a specific XML Schema. The default namespace name for an SCL document is

gsso9..vvv-hdb-bg.5074/.1//5.RBK which is the namespace specified by IEC

containing all the XML elements
16

, attributes, and data types that can be used in the

creation of a valid SCL file. The semantics and structure of the SCL file will thus be

validated against the IEC 61850 XML Schema defined in IEC 61850-6. (Goldberg

2009: 116, 170.)

Prefixes are used as shorthand for the namespace names. The combination wlkmr9wrh in

the root element declares the prefix wrh which refers to the unique URL

gsso9..vvv-v2-nqf.1//0.WLKRbgdl`Ăhmrs`mbd. The prefix is used to label

individual elements, i.e., to assign elements to a particular namespace. wrh would thus

be used to label any valid XML Schema element not belonging to the IEC 61850-

specific XML Schema. Elements without a prefix belong to the default namespace.

(Goldberg 2009: 165-166, 169.)

An example of the communication section of an SCL file is given in Figure 10. The

communication system consists of a subnetwork named V/0. V/0 is of type 7ĂLLR

which refers to part 8-1 of the standard, i.e., the station bus. The given bitrate of 10 b/s

is apparently incorrectðthe correct XML element for a Fast Ethernet network is

;AhsQ`sd ltkshokhdq<"L" tmhs<"a.r"=0//;.AhsQ`sd=. A physical device named

14
 Uniform Resource Identifier

15
 Uniform Resource Locator

16
 Element definitions and descriptions of element attributes can be found in IEC 61850-6.

 34

K`osno is connected to the subnetwork via a SAP named R0. A GSE (GOOSE) control

block named Rs`str, contained in logical device B0 of K`osno, needs to be assigned

(IEC 61850-8-1 2011: 143; IEC 61850-6 2009: 81):

¶ a multicast address from the address range specified for GOOSE in Annex B of

IEC 61850-8-1,

¶ an @OOHC (application identifier) which is a system wide unique identification

of the application to which the GOOSE message belongs, and

¶ a VLAN priority value of 4, as is commonly used for GOOSE and SV messages.

Figure 10. An example of the communication section of an SCL file. The

communication system consists of a subnetwork of station bus type. For brevity,

only one connected IED is shown. The IP address of the IED is needed as well as

the multicast address, application ID, and VLAN priority used by the GSE control

block contained in the IED.

An example of the IED section is given in Figure 11, where the hierarchies of the IEDs

involved are clearly distinguishable from the SCL code. IED K`osno is connected to a

 35

subnetwork through a SAP named R0.17
 The SAP has a server containing the

mandatory element @tsgdmshb`shnm, and a logical device named B0. @tsgdmshb`shnm

defines, in case of a device description, the authentication possibilities, and in the case

of an instantiated device, the methods to be used for authentication. (IEC 61850-6 2009:

68.) B0 contains two logical nodes, the KM/ and the CBHO`, which are instances of the

logical node classes KKM/ and CBHO, respectively. KM/ has a DataSet named Rs`str

which references data attribute rsU`k, which resides in the data object DmfNmNee of

logical node CBHO`. A DataSet can contain references to data objects or data attributes

in any logical node on the same server where the DataSet itself is defined. (IEC 61850-

7-2 2010: 63.) The DataSet Rs`str is governed by the GSE control block Rs`str.
18

 The

logical node CBHO` has two inputs, each referencing a data attribute called rsU`k.

These are two separate data attributes residing in two separate logical nodes in IED

U@LO.

IED U@LO mainly follows the same structure, except that the logical node KKM/^/

contains both a DataSet and an external reference. The DataSet CRF0 references the

two data attributes called rsU`k residing in the logical nodes UH0FFHN026 and

UH1FFHN027. The names of these two logical nodes can be derived from the

concatenation of the prefixes UH0 and UH1, the logical node class FFHN, and the

suffixes 026 and 027. For brevity, they were left out from the example. The input

references data attribute rsU`k of IED K`osno. The same data attribute is also

referenced by DataSet Rs`str of IED K`osno. An input in one device can ñexternally

referenceò only a data object/attribute which is referenced by (included in) a DataSet of

the ñexternalò device. It is very important that these cross-references (dataflow) between

DataSets in one device and inputs in another device are configured correctly.

17
 No services were defined; the names of any services should be listed between the IED name and

the SAP name. Consult IEC 61850-6 for examples.

18
 A DataSet and the control block that governs it do not need to have the same name.

 36

Figure 11. An example of the IED section of an SCL file. Notice the use of references

between DataSets in one IED and inputs 'DwsQde) in the other IED.

 37

An example of the data type templates section of an SCL file is given in Figure 12. The

data type templates section lists the instantiable logical node types, data object types,

data attributes, and enumerated types. The logical node CBHO` is instantiated from the

compatible logical node class CBHO, and it contains a data object named DmfNmNee.

DmfNmNee is of type (is derived from) rhlokdROR, which is merely a subset of the data

attributes contained in the common data class RORðrhlokdROR implements only the

mandatory data attributes rsU`k (a Boolean value), p (quality), and s (timestamp),

required for instantiation of the ROR class. These data attributes are functionally

constrained by the functional constraint value RS (status). The attributes cbgf (data

change) and pbgf (quality change) are the trigger options, i.e., the reasons that trigger

the automatic sending of a GOOSE message containing the values of the data attributes

that are referenced by the DataSet belonging to the GSE (GOOSE) control block. More

details will be given in Chapter 4, óThe Abstract Communication Service Interfaceô.

Figure 12. An example of the data type templates section of an SCL file. It contains

templates for the instantiable logical node types, data object types, data attributes,

and enumerated data types.

 38

3. THE GOOSE SOFTWARE APPLICATION

The goal for the practical part of this thesis was to realize interoperable GOOSE

communication between two different IEDs. A simple application based on an open

source platform was developed in order to enable communication between a Wärtsilä

Local Display Unit 20 (LDU) and a Vamp 50 overcurrent and earthfault protection

relay. A small Ethernet LAN was established by interconnecting the LDU and Vamp

relay through a switch, which was configured to strip the VLAN tags from the Ethernet

packets. The network traffic was monitored with Wireshark and PuTTY that were

running on a laptop PC. PuTTY was also used to start up the GOOSE application in the

LDU. The hardware setup is illustrated in Figure 13.

Figure 13. The hardware setup. The LDU and Vamp IEDs communicate over an

Ethernet network through a switch and the network traffic is monitored by

Wireshark running on a laptop PC.

The LDU is based on the PowerPC processor architecture, and has a particular

distribution of the Linux operating system running on it. The open source Oracle VM

Virtualbox platform is capable of simulating the Linux development environment used

 39

for creating software for the LDU. The development environment was used on the

laptop to cross-compile code for the LDU. The following sections present the software

used in the development of the GOOSE messaging application. Chapter 3 is concluded

by a brief discussion of the results.

3.1. The Rapid61850 platform

Q`ohc5074/ is a software platform developed at the University of Strathclyde,

Glasgow, UK. It is stated to be the first open source implementation of IEC 61850, and

its main intended application is to implement IEDs for rapid prototyping of protection,

control, and automation systems in both research and education. The idea is that the

system designer can focus on the design and implementation of the protection scheme,

rather than on the underlying communications infrastructure. The platform, which is

based on the Eclipse Modelling Framework (EMF), takes a System Configuration

Description (SCD) file as an input, and automatically generates the low-level

communications code required for implementing GOOSE and Sampled Values

messaging in the C programming language. The generated communication stack is

hardcoded and therefore very efficient at run-timeðthe IED does not need to interpret

the SCD file at run-time or maintain an internal model of the SCD. (Blair 2012; Blair,

Booth & Burt 2011a; Blair, Coffele, Booth & Burt 2012).

The code generation process is depicted in Figure 14. The EMF automatically generates

a Java model of the IEC 61850 XML Schema. It also generates an XML parser, tailored

to the Schema, for parsing SCD files. An SCD file is then imported to the EMF

platform, and the XML parser performs syntactical and semantic validation of the SCD

file. The validation process is separate from the code generation process and extensively

uses the EMF Model Query framework for searching and filtering SCD data. After

successful validation, the parser generates an instance of a hierarchical model

containing Java objects. The objects are automatically populated with data from the

SCD file, and the model can be further manipulated in software. Java Emitter Templates

(JET) files are then used to transform the Java model instance into a C implementation.

 40

The JET files define the generic structure of the C source and header files. The

generated C code implements all IEDs specified in the SCD file, and may be used as

part of a C/C++ program. An example SCD file and a l`hm-b file are also provided by

the software package. (Blair 2012; Blair Booth & Burt 2011a; Blair, Coffele, Booth &

Burt 2012).

Transform

Instantiate

Figure 14. The code generation process. The EMF platform generates a Java model and

an XML parser from the IEC 61850 XML Schema files, validates the SCD file used

as an input, generates an instance of the Java model according to the structure in the

SCD file, populates the instance with data from the SCD file, and finally transforms

the Java objects into C code. (Adapted from Blair, Coffele, Booth & Burt 2012;

Blair, Booth & Burt 2011b.)

 41

Each data type in the SCD file is mapped to a C data structure, resulting in a hierarchy

of C data structures. Primitive types, such as integer and floating-point numbers, are

mapped to generic primitive types, which are then mapped to device-specific C

primitive types of appropriate byte-length and sign. An example of the mapping of the

common data class R@U (Sampled Value) from SCL to C is given in Figure 15. (Blair,

Coffele, Booth & Burt 2012.)

Figure 15. The mapping of hierarchical SCL data types creates C data structures with

the same hierarchy in the resulting code. (Adapted from Blair, Coffele, Booth &

Burt 2012.)

The software is intended to be platform-independent and lightweight enough to run on

embedded devices, and therefore only GOOSE and SV messaging are implemented.

The architecture may be extended in the future to support other features of IEC 61850,

like the MMS services. (Blair, Booth & Burt 2011a.)

The configuration process required to set up the Q`ohc5074/ platform is rather

complicated. The software setup was done by following the instructions in the

QD@CLD-lc file found at (Blair 2012).

 42

3.2. The Vampset IED Configuration Tool

Vampset is an IED Configuration Tool provided by Vamp Ltd. for configuring Vamp

IEDs. In order to configure an IED in Vampset, the IED must first be connected to the

PC through an Ethernet network or USB. After that the connection is established, the

ICD file residing in the IED is automatically downloaded to Vampsetðthis procedure is

often referred to as ñself-descriptionò of a device in IEC 61850.

The IEC 61850 server interface of Vamp supports (VAMP 2009: 1):

¶ a configurable data modelðselection of logical nodes corresponding to active

application functions,

¶ configurable pre-defined DataSets,

¶ dynamic DataSets created by clients,

¶ reporting functions with buffered and unbuffered report control blocks,

¶ a control model; direct with normal security,

¶ configurable GOOSE publisher DataSets, and

¶ configurable filters for GOOSE subscriber inputs.

A Vamp IED receiving GOOSE messages can map the binary values of the message to

its 64 input points, i.e., network inputs NI1 to NI64. Vamp IEDs can transmit GOOSE

messages which consist of a maximum of 8 Boolean data attribute values. Two GOOSE

control blocks (FBA0 and FBA1) are available for controlling the transmission of

GOOSE messagesðthe maximum number of data points in one device is therefore 16.

(VAMP 2009: 5.)

The following figures reflect the configurations done in Vampset to enable the Vamp

IED to transmit and receive GOOSE messages. The configuration process was initiated

by resetting all the current settingsðall report control blocks were disabled, whereas the

GCB1 and GOOSE subscription were enabled. The GOOSE configuration view in

Vampset is illustrated in Figure 16. Different @ookhb`shnm HCr must be used for FBA0

and FBA1, and for every IED communicating with the device. Vamp IEDs can receive

GOOSE messages only via one L@B `ccqdrr, therefore all devices transmitting data

 43

to the Vamp IED must have the same L@B `ccqdrr set in their GOOSE control

blocks. The different sources are distinguished by their unique @ookhb`shnm HCr.

(VAMP 2010a: 6; VAMP 2010b: 3.)

Main configurations to enable

sending of an 8-bit GOOSE

data packet.

Configuration Revision

number, which may be used to

block usage of wrong data in

the GOOSE data receiver.

MAC Address for GOOSE data,

allowed range 01-0C-CD-01-00-00

é 01-0C-CD-01-01-FF

Application ID

This is a number which identifies the

GOOSE data packet and is used in

the receiver to receive correct data

package.

Main configurations to enable

reception of GOOSE data

from other devices.

MAC address for incoming GOOSE

data. The Vamp IED can only receive

GOOSE packets over this multicast

address.

Figure 16. The GOOSE configuration view in Vampset shows the main parameters for

configuring the GOOSE publisher and subscriber functions. (Screenshot from

Vampset.)

The logical nodes (functions) which are to be used via the IEC 61850 interface are

selected in the IEC 61850 data map view, as illustrated in Figure 17. Virtual inputs 1

and 2, which correspond to the F1 and F2 buttons on the front panel of Vamp 50, were

set hm trd. The virtual inputs 1 and 2 are data attributes residing in the logical nodes

UH0FFHN026 and UH1FFHN027, respectively. The user can also select which logical

nodes shall relate to the three available report control block C`s`Rdsr. Some clients

 44

may create their own so called dynamic data sets and assign these to report control

blocks. Both persistent and non-persistent DataSets are supported. The meaning of

ñpersistentò and ñnon-persistentò is explained in Section 4.7, óThe DataSet classô.

(VAMP 2009: 3-4.)

Predefined IEC 61850

names for the functions

Select, which data set(s) are used

to send events from the function

Editable text for

the functions

Select, which

functions are in use

Figure 17. The IEC 61850 data map view shows the logical nodes (functions) which

are used and whose data attributes can be included in C`s`Rdsr for reporting

functions. (Screenshot from Vampset.)

The data attributes of the logical nodes set hm trd in the IEC 61850 data map view can

now be included in a GOOSE C`s`Rds, governed by FBA0 or FBA1, as illustrated in

Figure 18.

Figure 18. The GOOSE C`s`Rds. The user can select up to eight Boolean data

attributes to be sent as a GOOSE message. (Screenshot from Vampset.)

 45

The GOOSE messages that the IED shall subscribe to are selected in the Subscriber data

configuration window, illustrated in Figure 19. The @oo HC of the IED to receive

GOOSE messages from must be set, along with the c`s` hmcdw of the desired data

attribute in the GOOSE packet. The application being developed needed to receive only

one single data attribute.

Figure 19. The GOOSE subscriber data configuration view. The IED is configured to

receive a GOOSE message with @oo HC 2//1, and to map the data attribute at

hmcdw / in the message internally to Network Input MH1. (Screenshot from

Vampset.)

After that any configurations have been done in Vampset the IED must be updated by

uploading the new configurations to it. Vampset can export the ICD file, which can

subsequently be opened in a System Configuration Tool or in an XML editor. More

information on Vampset can be found in the documents at Vampôs website
19

.

3.3. Development of the SCD file

The system configuration began by taking the SCD file rbc-wlk provided by

Q`ohc5074/ and stripping it of everything unnecessary: everything but the header

section, an IED section, and the communications and data type templates sections

belonging to that IED was removed. Then, by using the IED and its communication and

data type templates as a framework, a new IED named K`osno was created. No System

Configuration Tool was used in this project; the SCD file was edited manually in an

19
 http://www2.schneider-electric.com/sites/corporate/en/products-services/former-

brands/vamp/vamp.page

 46

XML editor. Section 3.3.1 explains how IED K`osno was derived. Section 3.3.2

explains how IED U@LO, generated by Vampset, was added to the SCD file.

3.3.1. IED Laptop

IED K`osno was assigned the logical node CBHO, which represents reciprocating

engine characteristics, measured values, and controls, as outlined by IEC 61850-7-420

and given in Table 1. The first letter (D) in the logical node name is the group indicator,

indicating that CBHO belongs to a group of logical nodes defined for the DER domain.

Only the mandatory (M) data object in the CBHO class, DmfNmNee, was used.

DmfNmNee can acquire the Boolean values of Sqtd or E`krd, and is derived from the

common data class ROR. Common data classes (CDCs) are explained in more detail in

Section 4.6, óData object classesô. (IEC 61850-7-420 2009: 56; IEC 61850-7-1 2011:

18.)

Table 1. Portion of the class definition for the logical node class CBHO. The data

object DmfNmNee, derived from CDC ROR, can acquire the Boolean values Sqtd

or E`krd, and is mandatory in an instance of the CBHO class. (IEC 61850-7-420

2009: 57.)

ROR stands for Single Point Status and can be found in IEC 61850-7-3. The ROR class

is given in Table 2. Three data attributes are mandatory in an instance of the ROR class:

rsU`k, which can acquire Boolean values, p (quality), and s (timestamp). rsU`k was

used, i.e., referenced by a DataSet. rsU`k has the trigger option (SqfNo) cbgf (data

 47

change), which means that when rsU`k has a data value change from false-to-true or

true-to-false, the value of rsU`k is sent as a GOOSE message to another IED that

references rsU`k, i.e., IED U@LO. All three data attributes have a functional constraint

(EB) meaning that they are functionally constrained data attributes (FCDAs).

Table 2. Portion of the class definition for the CDC Single Point Status (ROR). Three

data attributes are mandatory when a data object is instantiated from the ROR class:

rsU`k, p, and s. (IEC 61850-7-3 2010: 26.)

The functional constraint indicates the services that are allowed to be operated on a

specific data attribute: EB = RS (status information) indicates that the status

information values may be read, substituted, reported or logged, but not written (by

services), as given in Table 3. The data attributes of a CDC are also grouped by FCs

into categories. The functional constraints can be found in IEC 61850-7-2. (Mackiewicz

2006.)

Table 3. The definition of the EB value RS. (IEC 61850-7-2 2010: 54.)

The data type templates derived for CBHO, DmfNmNee, and rhlokdROR were given in

the end of Section 2.6.3, óStructure of the SCL fileô.

 48

3.3.2. IED VAMP

The ICD file, describing the complete configuration of Vamp 50, was opened in an

XML editor. A reference to the data attribute rsU`k of DataSet Rs`str in IED K`osno

was added, after which the updated ICD file was re-opened in Vampset and used to

update Vamp 50. The information in the ICD file was then copied over to the SCD file.

The addition of the VAMP IED to the SCD file demanded significant modifications to

the SCL code due to the compatibility issues discovered when Q`ohc5074/ parsed the

file. The main problem was caused by the fact that Q`ohc5074/ uses a newer

namespace (2006) while Vamp uses an older one (2003). To solve the problem, the old

namespaces were removed, as were incompatible parts of the data type templates

section. Unused report control blocks and GOOSE network inputs were removed for

convenience. The resulting SCD file that was finally accepted by the Q`ohc5074/

parser no longer entirely conformed to the IEC 61850-6 standard due to the removed

information. The modified SCD file was also not used to update the Vamp IED.

However, as the SCD file was only needed to generate the communications code for the

LDU, the modifications had no impact on the resultðwhat was most important was that

the MAC addresses, Application IDs, DataSet references, and input references were

configured correctly.

3.4. The C source code

The finished SCD file was used as an input to the Q`ohc5074/ parser, which then

generated some C source and header files. The provided l`hm-b file and the example

functions it contained were used as a framework when new functionalities were

developed. Code for reading and writing Ethernet packets is however not provided by

the software platform. The code had to be included manually, as will be explained next.

3.4.1. Communication

The QD@CLD-lc file recommends the ob`o (packet capture) API (Application

Programming Interface) for handling the communication. Packet capture refers to the

 49

action of collecting data as it travels over a network. Linux implements ob`o in the

khaob`o library, which can be used by programs to read and write data packets directly

at the DataLink layer, independently of the actual DataLink access provided by the

operating system. This is consistent with the mapping of GOOSE messages directly to

Ethernet frames, bypassing the middle layers. (Garcia 2008; Wikipedia 2013; Stevens

1998: 703, 708, 725.)

The khaob`o library was not readily available in the LDU, and therefore a packet socket

was created instead. In the general case, sockets represent interfaces from the upper

three layers into the Transport layer. The use of sockets enables communication

between applications on the same host or between applications on different hosts

connected via a network (i.e., communication on two different ranges). A socket always

exists within a communication domain, which determines the range of communication

and the address format used to identify the socket. The most common socket types are

stream sockets (RNBJ^RSQD@L) and datagram sockets (RNBJ^CFQ@L), used

with the Transport layer protocols TCP and UDP
20

, respectively. A socket of type raw

(RNBJ^Q@V) can be used to bypass the Transport layer and use the Network layer

directly. (Stevens 1998: 18; Kerrisk 2010; 1150, 1162.)

The function hms rnbjds'hms cnl`hm+ hms sxod+ hms oqnsnbnk(: creates a socket and

returns a file descriptor used to refer to the newly created socket in later system calls.

The domain argument specifies the domain for the socket, and the type argument

specifies the socket type. The value of the protocol argument is in general 0. The

address information of the socket is stored in a struct of type rnbj`ccq^kk. The function

call o`bjds^rnbjds < rnbjds'@E^O@BJDS+ RNBJ^Q@V+ gsnmr'DSG^O^@KK((:

creates a packet socket. Packet sockets are used to send or receive packets at the

DataLink layer, and can thus be used for GOOSE messaging. The code for the packet

socket can be found in Appendix 3. (Kerrisk 2010: 1153; Ubuntu Manuals 2013.)

20
 User Datagram Protocol

 50

The most important functions provided by Q`ohc5074/ are the encoding and decoding

functions for GOOSE and Sampled Values. GOOSE packets are generated by calling

the function rdmc'ateedq+ rs`strBg`mfd+ shld@kknvdcSnKhud(: where ateedq is a

pointer to a reserved memory space where the bytes are to be stored, rs`strBg`mfd

should be 0 if any value in the DataSet has changed, and shld@kknvdcSnKhud is the

maximum time in milliseconds for the receiver to wait for the next retransmission. If

this time is exceeded before a new message arrives, it is assumed that a communication

failure has occurred. The function returns the length of the GOOSE packet. (Blair 2012;

IEC 61850-8-1 2011: 93.)

The transmission of GOOSE messages is controlled by a GOOSE Control Block.

However, no trigger options are supported at present in Q`ohc5074/. The most

common trigger option is such that when the value of a data attribute referenced by a

GOOSE DataSet changes, i.e., when an internal event has occurred, the message is

transmitted. Therefore it is up to the user to create an event monitor that monitors the

referenced data attributes. When a value changes, the rdmc function is called and the

rs`strBg`mfd parameter is set to 0. Upon retransmission, the value is set to /. (Blair

2012; Blair 2013.)

The function developed for retransmitting ñoldò GOOSE messages is given in Figure

20. Transmission of a ñnewò message is done through a callback function as will be

explained in Section 3.4.3. More details on Linux API functions can be found in

(Stevens 1998) or the Ubuntu Manuals online.

Figure 20. The functions for the encoding and sending of a GOOSE data packet. The

encoding function is provided by Q`ohc5074/ and the send function uses a packet

socket.

 51

The function for receiving a GOOSE packet is given in Figure 21. As long as there is

data in the reception buffer, the packets are filtered by the multicast address range

specified for GOOSE and Sampled Values in Annex B of IEC 61850-8-1.

Figure 21. The functions used for receiving and filtering GOOSE messages.

A framework for an optional callback function is provided. After a received GOOSE or

Sampled Values message has been successfully decoded, the callback function is called.

The actual functionality of the callback function is user defined. It can, for example, be

used to save the received GOOSE data to a separate memory bufferðby default, only

one packet of data is saved in the buffer for each GSE Control, and that packet is

overwritten when a new packet arrives. (Blair 2012.)

3.4.2. The GOOSE retransmission scheme

The GOOSE retransmission scheme, specified in IEC 61850-8-1, is not available in

Q`ohc5074/ at present. Therefore, it had to be developed and added manually. The

developed algorithm is experimental and was used for demonstration purposes only. It

fulfi ls neither the functional requirements nor the performance requirements imposed by

the GOOSE protocol. A real implementation that is utilizing GOOSE trip messages

would also require a real-time operating system running on the target processor.

The retransmission algorithm is given in Figure 22. At the first loop of the infinite

enq loop, the value of shbjr is 0 and the value of hmsdqu`krdkdbsnq is also 0, which means

that the he statement is evaluated as true. As the value of hmsdqu`krdkdbsnq is less than 4,

it is incremented by one. Next, a GOOSE packet containing the values of the data

attributes referenced by DataSet Rs`str is generated. The packet is assigned the

shld@kknvdcSnKhud value specified in the array lhkkhhmsdqu`kr at the position

determined by the value of hmsdqu`krdkdbsnq+ i.e., 1024 milliseconds. The GOOSE

 52

packet is then sent over the network using the specified multicast address. To indicate

that a package was sent, a message containing the shld@kknvdcSnKhud value is printed

to console. The variable shbjr is reset to 0 and the program sleeps for 500 milliseconds.

The idea with the sleeping is to create the delays corresponding to the retransmission

intervals of the GOOSE retransmission scheme, which is explained in more detail in

Section 4.8. One loop corresponds to (approximately) a 0.5 second delay, four loops

correspond to 4*500 ms = 2 seconds, 20 loops correspond to 10 seconds, and 20 loops

correspond to the keep-alive
21

 interval of 20 seconds.

Although the value of shbjr was reset to 0, it is immediately incremented to 1 in the

second loop by the update expression in the enq loop. As the he statement is still

evaluated as true, another message is transmitted. Variable shbjr is again reset to 0 and

the application sleeps for another 500 milliseconds.

In the third loop, the he statement is no longer evaluated as true. Therefore no message is

transmitted, Hmsdqu`krdkdbsnq is not incremented, and shbjr is not reset to 0. The he

statement is evaluated as false also in the fourth and fifth loops, and the application has

thus ñsleptò for an interval of approximately 2 seconds. In the sixth loop, the value of

shbjr has grown to 4, meaning that the he statement is again evaluated as true, and

another message is sent.

The algorithm continues in this manner to increase the message sending intervals until

the value of hmsdqu`krdkdbsnq reaches 4. At this point the retransmission interval is 20

seconds, and the algorithm continues indefinitely at this rate. A detailed, step-by-step

walkthrough of the algorithm can be found in Appendix 4.

21
 The keep-alive message is a retransmission of the latest GOOSE message, continuously

transmitted between long time intervals, typically 20 seconds. It essentially informs other IEDs

ǘƘŀǘ άǘƘŜ ǎŜƴŘŜǊ ƛǎ ǎǘƛƭƭ ŀƭƛǾŜέΦ {ŜŜ {ŜŎǘƛƻƴ пΦу ƻǊ L9/ смурл-8-1 for more details.

 53

Figure 22. The GOOSE retransmission scheme implemented in l`hm'(- The algorithm

is based on a platform-specific rkddo function which creates the delays between

retransmissions of the same GOOSE message. One loop of the infinite enq loop

corresponds to a delay of approximately 0.5 seconds. The algorithm uses an array

the values of which give the number of loops that should be performed between

retransmissions to create the required delays.

